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ABSTRACT. Zaremba conjectured that given any integer m > 1 , there exists an 
integer a < m with a relatively prime to m such that the simple continued 
fraction [0, cl, .. ., cr] for a/m has ci < B for i = 1, 2, .. , r, where B 
is a small absolute constant (say B = 5) . Zaremba was only able to prove an 
estimate of the form ci < C log m for an absolute constant C . His first proof 
only applied to the case where m is a prime; later he gave a very much more 
complicated proof for the case of composite m . Building upon some earlier 
work which implies Zaremba's estimate in the case of prime m, the present 
paper gives a much simpler proof of the corresponding estimate for composite 
m. 

1. INTRODUCTION 

Apparently, Zaremba [5, pp. 69 and 76] was the first to state the following: 

Conjecture. Given any integer m > 1, there is a constant B such that for some 
integer a < m with a relatively prime to m the simple continued fraction 
[O, Ci, ..., cr] for a/m has ci < B for i= 1, 2, ..., r. 

This conjecture is still unproved, though numerical evidence suggests that 
B = 5 would suffice. The best result known replaces the inequality in the 
conjecture by ci < Clog m for some constant C; this was first proved by 
Zaremba [5, Theorem 4.6 with s = 2, p. 74] for prime values of m. Later, 
Zaremba [6] gave a very much more complicated proof for composite values of 
m. 

As a byproduct of a more general investigation, I proved in an earlier pa- 
per [1, p. 154] that the inequality in the conjecture can be replaced by ci < 
4(m/p(m))2 log m, where (p(m) is Euler's function. Of course, this implies 
ci < C log m if m is prime, but only gives c, < C log m(log log m)2 in general. 
In the present paper, I show how the argument of [1] can be refined to eliminate 
the loglog factors. The result is 

Theorem 1. Given any integer m > 1, there is an integer a < m with a relatively 
prime to m such that the simple continuedfraction [0, cl, ... , cr] for a/m has 
ci < 3 log m for i = 1, 2, ..., r. 
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The proof is much simpler than the proof of the corresponding result in 
Zaremba [6]. I am grateful to Harald Niederreiter for suggesting that it would 
be worthwhile to publish this simpler proof. 

2. PROOF OF THEOREM 1 

Let xli denote the distance from x to the nearest integer. We shall actually 
prove the following sharpening of the case n = 2 of the theorem in [1]. 

Theorem 2. Given any integer m > 8, there exist integers a1, a2 relatively 
prime to m such that 

2 
TI lIkai/mll > (3m log m)-1 for each k, 1 < k < m. 
i=-1 

As in [1], it is easy to deduce Theorem 1 from Theorem 2: We may assume 
a, = 1 and a2 = a in Theorem 2, since we may replace ai by bai (i = 1, 2), 
where bal1 mod m. Thus, Theorem 2 implies that for any m > 8 there 
exists an integer a < m with a relatively prime to m such that 

(1) kllka/mll > (3logm)-l foreachk 1 < k<m. 

If [0, Cl, ..., cr] is the simple continued fraction for a/m with convergents 
pi/lq (O < i < r), then we have qillqia/mll < 1/cji+ for i = 0, 1,..., r- 1. 
Therefore, (1) implies Theorem 1. (For m < 8 it is easy to verify Theorem 1 
by calculation.) 

We begin the proof of Theorem 2 with some definitions taken from [1, 
p. 155]. Given any integer m > 1 and positive integers a,, a2, we let L 
denote a positive real number which we shall specify later. We say that the pair 
al, a2 is exceptional (with respect to m and L) if 

2 

(2) IlIkai/mll > L-1 for each k, 1 < k <in. 
i=l 

Obviously, the pair al, a2 can be exceptional only if each ai is relatively 
prime to m. If for some k 1 < k < m, the inequality in (2) is false, 
then we say that k excludes the pair al, a2. We shall estimate the integer 
J = J(k) = J(k, m, L) = number of pairs a,, a2 with each ai relatively 
prime to m which are excluded by k and which satisfy 1 < a, < a2 < m/2. 
The requirement that a, and a2 be different is convenient later on. 

We first estimate J(k, m, L) in the case where the greatest common divisor 
(k, m) is 1. Such a k excludes the pair al, a2 if and only if 1 excludes the 
pair ka1, ka2; therefore. 

(3) J(k) = J(1) whenever (k, m) = 1. 

We shall prove 

(4) J1< '( M) (log(m2IL) +log log m). 

In order to do this, we need to define the following sums D(x, r, m) of the 
divisor function d(n) (= the number of positive integer divisors of the positive 
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integer n) over arithmetic progressions with difference m 

D(x, r, m) = E d(n). 
n<x 

n-r mod m 

A pair a,, a2 with ai < m/2 (i = 1, 2) is excluded by k = 1 if 

(5) a1a2 < m2/L. 

The number of ways of writing any positive integer n < m2/L as a1a2 is 
just d(n), and the factors are both relatively prime to m if and only if n is 
relatively prime to m. Hence, the number of pairs a,, a2 satisfying (5) and 
the additional conditions (ai, m) = 1 (i = 1, 2) and 1 < a1 < a2 < m/2 does 
not exceed 

2 E dn=2 I (2L, r, m) 

n<m2/L r=1 
(n, m)=1 (r, m)=l 

(the factor of 2 comes from the fact that d(n) counts each factorization n = 
2 

a1a2 with distinct a1 and a2 twice; this is where our assumption that a1 and 
a2 are distinct is convenient). Thus, we have proved 

1 
m 

(6) J(1, m, L) < - 
D(M2 IL, r, m). 

(r , m)= 1 

In order to estimate the sum in (6), we need some results of D. H. Lehmer 
[4] concerning the sums H(x, r, m) defined by 

H(x, r, m) = Z 1/n. 
n<x 

n=-r mod m 

Lehmer [4, p. 126] proved the existence of the generalized Euler constants 
y(r, m) defined for any integers r and m > 0 by 

(7) y(r, m) = lim (H(x, r, m) - m-1 logx). 
x-oo 

Clearly, Euler's constant y is y(O, 1), and y(r, m) is a periodic function of r 
with period m. 

Lemma 1. For any integers r, m with m > 0 and 0 < r < m, we have 

0< H(x, r, m) - m-1 logx - y(r, m) < 1/x 

for all x > m. 

Proof. This follows easily from the proof of the existence of the limit in (7), as 
given by Lehmer [4, p. 126]. 0 

In order to state our next two lemmas, it is convenient to define the arith- 
metical functions v(n) and w(n) by 

v(n) = - (d)d-' log d 
din 
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(here, /u(d) is the Mobius function and the sum is taken over all positive integer 
divisors d of n) and 

w(n) = nv(n)/1p(n) = E(logp)/(p - 1) 
pln 

(here, the sum is taken over all prime divisors p of n). 

Lemma 2. For every positive integer m, 
m 

E y(r, m) = p(m)m-'(y+ w(m)). 
r=1 

(r, m)= 1 

Proof. This is equation (16) of Lehmer [4, p. 132]. El 

Lemma 3. For every integer m > 8, 

y+ w(m) <(m/p(m))loglogm. 
Proof. Theorem 5 of Davenport [2, p. 294] states 

limsupv(m)/loglogm= 4, 
m-oo 

which implies the lemma for all large m. Some simple calculations (using 
y = .577... ) gives the inequality as stated. El 

Our final lemma gives an upper bound on the sum D(x, r, m) when r is 
relatively prime to m. 

Lemma 4. For any integers r, m with r relatively prime to m and m > 8, we 
have 

D(x, r, m) < (m)m-2x log x + 2xm- 1 log log m. 
Proof. We adapt the standard proof of Dirichlet's theorem on summing d(n) 
for n < x. The sum D(x, r, m) is the number of lattice points (u, v) with 
uv _ r mod m lying below the curve uv = x in the first quadrant of the u, v 
plane. By using the symmetry in the line u = v, if we define T = [x1/2], then 
we have 

T 

(8) D(x, r, m) < 2 Fi(x), 
i=1 

where Fi(x) denotes the number of integers v such that iv _ r mod m and 
iv < x; we have strict inequality here since we are double counting the lattice 
points in the square of side T formed by portions of the u- and v-axes. (For a 
more elaborate version of this argument, which leads to a O-estimate analogous 
to the one for the usual Dirichlet divisor problem, see Satz 2 of Kopetzky [3]. 
The simple inequality of Lemma 4 suffices for our purposes, since the more 
detailed argument does not affect the main term.) If r is relatively prime to 
m, then iv _ r mod m is solvable if and only if i is also relatively prime 
to m, and in that case there is exactly one solution v mod m. It follows that 
Fi(x) = 0 unless i is relatively prime to m and that 

(9) F1(x) < x(im)-1 for (i, m) = 1. 
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Now (9) implies 

T m 

E Fi(x) < (xlm) E H(T, r, m). 

i=l r=1 
(i, m)=1 (r, m)=l 

Finally, Lemmas 1, 2, and 3 give the inequality in Lemma 4. El 

It follows from (3), (6) and Lemma 4 that 

(10) J(k, m, L) < (m)2L-1log(m2-1)+mp(m)L1 loglogm 

holds for all k with k relatively prime to m. By the argument in [1, pp. 
156-157], the inequality in (10) is still true if k is not relatively prime to m 
(indeed, in that case we can even insert a factor of 8/9 on the right-hand side 
of (10)). 

We can now complete the proof of Theorem 2 (and so of Theorem 1) as in 
[1, p. 157]: Clearly, (2) holds if and only if the inequality in (2) is true for each 
k < m/2. The total number of pairs a1, a2 with each ai relatively prime to 
m and 1 < a, < a2 < m/2 is 

(P(m)/2) > (m)2/8. 

By (10) and the definition of J(k, m, L), an exceptional pair a1, a2 certainly 
exists if 

(11) p(m)2/8 > Im( p(m)2L-1 log(m2L-1) + m(p(m)L-1 loglogm). 

Computation (using the well-known fact that lim sup m((p(m) log log m)rn 
ey = 1.781...) shows that (11) is true for m > 8 if L > 3mlogm. This 
completes the proof of Theorem 2. 

3. GENERALIZATIONS 

It was pointed out in [1, pp. 154-155] that something like Theorem 2 can be 
proved in the case of n integers. The main result of [1] was 

Theorem 3. Given any integers d > 4n and n > 1, there exist integers a1,.. ,an 
relatively prime to m such that 

n 

(12) 1I7lIkai/mll > 4-n((p(m)/m)n(m logn-I m)-i for each k, 1 < k < m. 
i=l1 

In view of the connection of Theorems 1 and 2 above, this can be regarded as 
an n-dimensional generalization of a weakened form of Zaremba's conjecture. 
In [1, p. 155], I proposed the following general conjecture; Zaremba's conjecture 
is the case n = 2. 

Conjecture. For each n > 2, the lower bound in (12) can be replaced by 
c(n)(m logn-2 M)-1. 

The proof of Theorem 2 above removed the factors p(m)/m in the case 
n = 2 of (12). One might hope to achieve the same result for arbitrary n 
by generalizing the proof of Theorem 2; this would require working with the 
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generalized divisor functions dn (t) = the number of ways of writing the positive 
integer t as a product of n positive integer factors. 

To conclude, I repeat another speculation from [1, p. 155]: It is possible that 
the lower bound in (12) could be replaced by c(n)m-1 for n = 3, or even for 
all n > 2. A small amount of computer testing of this for n = 3 was reported 
in [1, p. 155]. Further computer experiments might be worthwhile. 
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